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INTERCEPT CORRECTIONS AND STRUCTURAL CHANGE 

MICHAEL P. CLEMENTS 
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DAVID F. HENDRY 
Institute of Economics and Statistics, and Nujield College, Oxford, UK 

SUMMARY 

Analyses of forecasting that assume a constant, time-invariant data generating process (DGP), and so 
implicitly rule out structural change or regime shifts in the economy, ignore an aspect of the real world 
responsible for some of the more dramatic historical episodes of predictive failure. Some models may offer 
greater protection against unforeseen structural breaks than others, and various tricks may be employed to 
robustify forecasts to change. We show that in certain states of nature, vector autoregressions in the 
differences of the variables (in the spirit of Box-Jenkins time-series modelling), can outperform vector 
'equilibrium-correction' mechanisms. However, appropriate intercept corrections can enhance the 
performance of the latter, albeit that reductions in forecast bias may only be achieved at the cost of inflated 
forecast error variances. 

1. INTRODUCTION 

In recent work (Clements and Hendry, 1994, 1995b), we have sought to establish a theory of 
economic forecasting that captures three aspects of the real world in which the forecasting 
venture is to be undertaken. First, that the data generation process (DGP) is non-stationary due 
to unit roots; second, that it is susceptible to structural breaks; and third, that the forecasting 
model typically differs from the (unknown) DGP. These features provide a rationale for the 
commonplace practice of making adjustments or 'intercept corrections' to purely model-based 
forecasts (see Hendry and Clements, 1994a,b).' A Monte Carlo study showed that forecasts 
generated from vector autoregressions in differences (DVARs) may be more robust than models 
in levels to certain forms of structural change, but that intercept corrections may help vector 
'equilibrium-correction' mechanisms (VECMs) to match the performance of DVARs.' 

An interesting example of the benefit of ignoring long-run information for forecasting would 
appear to be Mizon (1995), who shows that only a DVAR has a satisfactory forecasting 
performance in the context of modelling UK wages and prices over the period 1966-93. Models 
such as VECMs, which include long-run information, tend to fail badly. The models are 
estimated on data up to Mrs Thatcher coming to power (1979:2), and then used to forecast the 
behaviour of wages, prices, and unemployment during the 1980s. There is anecdotal evidence of 

'Recognition of the potential for such adjustments has a long lineage; see, for example, Theil (1961) and Klein (1971). 
Following Davidson et a[. (1978), these terms have been known as 'error-corrections'. However, they may play the 

opposite role when the equilibrium changes by 'correcting' to an inappropriate equilibrium. Hence the change in 
terminology, although the acronym is unchanged. 
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structural change in the 1980s in response to the dislocating effect of the 1979-81 recession, 
and the change in government economic policies may have altered the long-run relationships 
between these three macro aggregates. Thus, models which include long-run information tend to 
'error-correct' on the basis of an outdated structure, and manifest significant forecast errors, 
while models that eschew such information perform reasonably well. 

The purpose of this paper is twofold. First, we deduce analytically the classes of structural 
breaks for which, conditional on the break having occurred at the time of forecasting, time- 
series models in differences should outperform econometric models. We then look at the 
usefulness of intercept corrections for the class of breaks that affect the deterministic variables 
(constant and linear trend), and derive expressions for the forecast biases and error variances, 
allowing an assessment of intercept-correcting strategies in terms of squared-error loss. Second, 
we apply some of these correction strategies to econometric models based on Mizon (1995), 
where wider classes of breaks than those we analyse analytically may be important, to 
investigate their usefulness in practice. The three-variable system of wages, prices, and 
unemployment is simpler than would be countenanced by the large-scale macro-econometric 
modelling groups, but has the virtue of allowing a 'statistical analysis' of intercept corrections. 
Previous studies, such as those carried out by the ESRC Macroeconomic Modelling Bureau at 
Warwick, have assessed the impact of intercept corrections on actual forecasts of the main 
modelling teams (see, in particular, Wallis and Whitley , 1991; Turner, 1990), and have been 
confined to only a small number of forecasts (typically less than three). Our setup allows an 
assessment of the impact of intercept corrections on forecast uncertainty using empirical mean- 
square forecast errors, taking account of their dependence on the forecast horizon and on the 
transformation of the data for which forecast accuracy is assessed. We distinguish between one- 
and h-steps-ahead forecasting performance, given the lack of invariance of mean-square forecast 
errors (MSFEs) to evaluating forecasts of levels versus changes (say), and the likely poor 
discriminatory performance of evaluation in differences (see Clements and Hendry, 1993, 
1995a). 

Sections 2 and 3 derive analytical results on the forecast performance of the VECM and 
DVAR models when there are structural breaks, and on the impact of intercept correcting the 
VECM. Section 4 explains the relevance of some of our recent work on forecast evaluation and 
multi-step forecasting for the present analysis. Section 5 introduces the empirical example of 
Mizon (1995), and Section 6 contains the results of the empirical study of the efficacy of 
intercept corrections. Section 7 provides some conclusions. 

2. FORECASTING UNDER STRUCTURAL BREAKS 

2.1. The Data Generation Process 

For illustrative purposes, we assume a linear, closed system so that all non-deterministic 
variables are forecast within the system. The vector of all n variables is denoted by w , and the 
system is represented by a first-order VAR which includes a constant and a linear deterministic 
trend: 

W , = Z , + Z , ~ + ~ W , - , + v ,  (1) 

where v,- IN,,(O, Q). The system is assumed to be integrated, and to satisfy rc n cointegration 
relations such that (see, for example, Johansen, 1988): 
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where a and p are n x r matrices of rank r. Then equation (1) can be reparameterized as a 
VECM: 

The impact of the deterministic components on the series depends on the relationship between 
a and t o ,  t,.Following Johansen (1994), decompose the 2n parameters in to+ z,t as: 

z,+ z , t=  a,co- aA,- aA,t+ a,c,t (3) 

where A, = - ( a l a ) - ' a ' z ,  (2r free parameters) and 6,= (aia,)-'a;zi (2(n - r)  free 
parameters) when a'a, = 0. Then ail, and aleiare orthogonal by construction. When the w, 
process does not contain a quadratic trend, alcl= 0, and A,, 6, and A, can all be varied freely. 
The w, process may still contain linear trends, which will also be a feature of the cointegrating 
vectors, as seems to be the case in the empirical example. Then ail,+ ail,t lies in the 
cointegration space, and equation (2) can be written as: 

When the system grows at the (vector) rate: 

from equation (4), we obtain: 

When /?'a is non-singular, as assumed throughout: 

Hence, in equation (4): 

Aw, = a,co+ all, + a(/I1w,-,-+- A, - Alt) + v,  

It is useful for subsequent calculations to introduce the idempotent matrix 
K = (I, - a(/?'a)-'8') such that K a  =0, #l'K = 0, K2= K and YK =K, implying that 
Kz, = Ky =Ka,co and K t ,  = 0. The cost of orthogonality in equation (4) is that the 
cointegrating vectors are no longer deviations about their means, so the 'intercept' aleois not 
the growth rate ly which can be expressed as:3 

y = a,co+ aq = ~a,c,+ a(pla)- 'A,  

since from equations (7) and (5): 

AE[plw,] = plEIAw,] = A, so that #?' y = A, (9) 

Consequently, we can rewrite the VECM as: 

where p, = 1/1+ A, and p,  = A, with: 

'In previous work (e.g. Clements and Hendry, 1995b, p. 1005) with t ,= 0, we have used a simpler, non-orthogonal 
decomposition of to.We are grateful to Bent Nielsen for bringing to our attention the problems with such an approach 
in the presence of the linear trend term. 
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Finally, a VAR in differences (DVAR) may be used, which within sample is misspecified 
relative to the VECM unless r = 0. The simplest is: 

so when a =0, the VECM and DVAR coincide. In practice, lagged Aw, may be used to 
approximate the omitted cointegrating vectors, but we do not consider such a model here as its 
behaviour under structural breaks is rather complicated. The Appendix notes its derivation. 

2.2. VECM Forecast Errors 

We now consider dynamic forecasts and their errors when parameters are subject to change in 
the forecast period. We draw on the analyses in Clements and Hendry (1994) and Hendry and 
Clements (1994b), focusing on the bias and variance components. We also consider the 
implications of the deterministic terms lying in the cointegrating space. For simplicity, we 
abstract from many of the potential sources of forecast error discussed in those two papers. 
Thus, the forecast commences from correct initial conditions (equal to the true value of the 
process, w,), we assume that the model matches the DGP in-sample, and we abstract from 
parameter estimation uncertainty, so that the forecast functions are based on the true (but sample 
period) values of the process. The algebra represents a Monte Carlo where the same in-sample 
value is used, but for different forecast values; to vary both and get the average outcome, we 
must take expectations over w,. It is crucial how this is done relative to the structural change: 
(a) change occurs at T + 1; (b) change occurred at T. 

Under these assumptions, the j-step-ahead forecasts for the levels of the process are given by 
fiT+j= E [ ~ T + j  I wTI:  

j- 1 

5 T + j = z o + r l ( T + j ) + Y R ' T + j ~ l=zriz(i)+Y'wT for j =  1, ..., h (12) 
i = O  

where we let to+ z, (T +j - i) = z(i) for notational convenience. The associated forecast errors 
are: 

We consider the situation where the system experiences a ste P change between the estimation * and forecast periods, such that (2,: z, :r )  changes to (zz: z ,  :Y ) over j = 1, ...,h,  but the 
variance, autocorrelation, and distribution of the disturbance term remain unaltered. Thus, the 
data generated by the process for the next h periods is given by: 

* i *  
= 

j-z1 

( r  ) Z  (i) f 
j- 1 

(r*)'vT+j-i + (r*)'wT 
i = O  i = O  

Then, the j-step-ahead forecast error can be written as: 

* i *  
DT+j  = 

j- 1 

( r  ) r (i) + 
j- 1 

(Y*)'v,+,-~+ (Y*)'w, -
j-z1 

r iz(i)  -Y ' W ~  

i = O  i = O  i = O  
(14)

j- 1 

i = O  i = O  
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The three components of forecast error are due to the changed intercepts and slope parameters; 
error accumulation; and an interaction term occasioned by the change in the slope parameter 
which includes the initial condition. 

The expectation of the j-step forecast error conditional on wT is: 

so that the conditional forecast error variance is: 

We now consider a number of special cases where only the impact of the deterministic components 
changes. With the assumption that Y* =Y, we obtain (noting the dependence of z* (i) on T +j): 

j- 1 

E[GT+,1wT]= Yi([z: + r : ( ~ + j - i ) ]  - [ r o + z l ( T + j -  i)]) 

The bias is increasing in j due to the first term in the square brackets. The impacts of the second 
and third terms eventually level off because: 

lim Yi = I, - a(flla)-'fl' = K 
i+=-

and Ka = 0. When the linear trend is absent and the constant term can be restricted to the 
cointegrating space (i.e. 2, = 0 and 5,= 0, which implies A, = 0 and therefore p ,  = y = 0) then 
only the second term appears, and the bias is O(1) in j. The formulation in equation (16) 
assumes that Y, and therefore the cointegrating space, remains unaltered. Moreover, the 
coefficient on the linear trend alters but still lies in the cointegrating space. Otherwise, after the 
structural break, w, would be propelled by quadratic trends. 

The conditional forecast error variance is: 

which is O(j). 

2.3. DVAR Forecast Errors 

Now, consider forecasts from a simplified DVAR. Forecasts from the DVAR for Aw, are 
defined by setting AwT+, equal to the population growth rate y: 

= y (18) 

so that j-step-ahead forecasts of the level of the process are obtained by integrating equation 
(18) from the initial condition w,: 

%T+,=GT+j-l+ for (19)y = w T + j y  j=1, ...,h 
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When r is unchanged over the forecast period, the expected value of the conditional 
j-step-ahead forecast error is: 

E[E',+,l w,] = 

j-z1 

Yi([r,*+ Z:(T + j - i)] -jy + (Yi- I,)w, (20) 
i = O  

The occurrence of w, in equation (20) is awkward for comparisons with the VECM in 
equation (16). Thus, we average over w, to give the unconditional bias EwTIZIT+j]. Since 
Y = I , +  a/?',forj>O: 

so from equation (7) using: 

we obtain: 

where f, = EwT[/3'wT]= p,"+ /3' ya(T + I), say, where the values of p,"and ya depend on the 
regime. Substituting from equation (23) into (20): 

j- 1 

E,T[PT+j]= ri[Y* - - u~:(T + j - i)] -jy + AjafT 
i = O  

From equation (21), as Yi = I, + A , a p  : 

Thus from equation (24), since p' y = pland fl' y * = ,n 7:  

where Cj  = (Dj+ B, - ( j  - l)Aj) when Dj = C~I :zTi. However, Cia/?' = 0 as follows. Since 
Yj = I, + Aja/?' from equation (22), then: 

jAja/?' = JT' -jIn 

and so eliminating jI, using equation (25): 
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Also: 

Combining these results: 

cI 
= (D, + B, - ( j- l)A,)a/3' =jTJ-A, -Aja/3' + A, -IT' + Aja/3' = 0 (27) 

Thus: 

In the same notation, the VECM results from equation (16) are: 

Thus, equations (29) and (28) coincide when p,"= p,, and ya = y as will occur if either there is 
no regime shift or the shift occurs after the start of the forecast period. 

2.4. Forecast Biases under Deterministic Shifts 

We now consider a number of interesting special cases of equations (28) and (29) which 
highlight the different behaviour of the DVAR and VECM under regime changes. Note that 
when y* = y, then /3' y* =/3' y, whereas y* + y does not necessarily entail that /3' y* + /3' y. If we 
view (z,, 2,) as the primary parameters, then it is informative to map changes in these 
parameters, via the orthogonal decomposition into (go, A,, A,), to the parameterization in terms 
of (y, p,, p , )  that underpins equations (28) and (29). From Section 2.1 we can summarize the 
interdependencies as: y(So, A,), p0(5,, A,, A,), pl(Al). 

* CaseI: zE= to ,  z , =  t,.Here, thereisnostructuralchange,p,"=p,and ya=  yandso: 

Thus, the forecast error biases in the DVAR and VECM coincide when there is no 
regime change, even when the DVAR omits an ECM which includes a non-zero trend. * * CaseII: t o +  z,, zy= t , ,  but 5,= 5,. Then y* = y; ,uE+p,. 

E[.it,+,I =A~~(PO-P:) (31) 

E[QT+,I =A~~(P,"-P:) (32) 

The biases are equal if p,"= p,; i.e. the shock is after the initial condition. However, 
E[QT+,]= 0 when p,"=p:, and hence the DVAR wins uniformly if the shock has 
occurred prior to the commencement of forecasting. In this example the component of 
the constant term orthogonal to a is unchanged so that the growth rate is unaffected. 

Case 111: z:+ z,, tT=z,, (as in Case 11), but now A t =  A, which implies 5:+ 5, and therefore 
p:+ p, and y* + y. However, /3' y* = /3' y holds so that: 
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since p1depends only on 2,. Consequently, the errors coincide when p,"= pO,  but 
differ when p,"= p;, though it is unclear whether the terms augment or attenuate each 
other. * Case IV: tE=t o ,  2 ,  + z,. All of ,no, p1and y change. If /3' y* # /3' y then we have equations (28) 
and (29), and otherwise the biases of Case 111. 

Alternatively, the difference in the forecast bias between the DVAR and the VECM is given 
by: 

d j =  E[pT+jl - EIQT+j l  = A j a ( [ ~ O - ~ , " l  (35)+ p ' [y -

This is zero when p,"= ,no and ya = y, but otherwise enhances or attenuates the existing biases, 
generally inducing a smaller forecast error bias in the DVAR when there are unmodelled regime 
shifts. 

An alternative representation is in terms of the changes between successive forecast errors. 
For the VECM, from equation (28) and that equation lagged: 

since Aj -A,-, = r J - ' .  The first term is constant, and hence can be removed by an intercept 
correction once the regime shift has occurred; the second tends to zero as j increases since: 

rJ-la-Ka = 0 

The results for the DVAR are similar: 

When p,"= ,u: and /3' ya= p' y*, then only a constant error ensues; when p," = p0 and 
/3' ya = p 'y ,  the outcome coincides with the VECM; otherwise, it lies in between these. 

3. INTERCEPT CORRECTIONS 

We can show that if there is a one-off change in the value of the deterministic parameters 2, in 
the DGP, which has occurred prior to the period on which the forecasts are conditioned, then the 
optimal (in the sense of yielding unbiased forecasts) intercept correction for the VECM is 
simply to add in the period T residual each step ahead. Below we denote forecasts generated by 
this method by wT+,. We also consider some other general strategies for intercept correcting, 
which are applied in the empirical work. In practice, of course, the circumstances under which 
the wT+, strategy is optimal are unlikely to hold exactly: the 2, parameters may shift as well; 2, 

may change a number of times over the forecast period; the slope parameters may also alter, etc. 
Thus it may be of interest empirically to compare the performance of other adjustment schemes, 
and in this section we consider what can be deduced analytically about their properties. 

We may also wish to base the adjustment on some average of recent errors rather than simply 
the observed model error at the forecast origin. 

Below, we assume that the period T residual embodies the change in the process, and the 
discussion is in terms of the VECM even though there may also be scope for adjustments to the 
DVAR. Assuming that r does not change, the period T residual is given by: 

We now consider a number of options for forecasting h steps ahead. The intercept correction 
(IC) can be held constant over the forecast period, so that the period T error is added in at each 
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step ahead. This is perhaps the most commonly used form of intercept correction, where the 
adjustment over the future is held constant at an average of the most recent errors (in our 
example, just the period T error). This amounts to solving: 

where wT = wT,SO that: 

Second, only adjust the one-step forecast: 

which implies that: 

q T + h =  \iTT+h + rh-'OT 

Third, one may adjust the h-step forecast by the full amount of the period T error: 
H 

WT+h = *T+h + Q T  

Finally, tailing-off the adjustment induces: 

W T + h  = Z O  + z1(T+ h) + rWT+h-1+ Hh-loT 

so that: 

where H may be diagonal, say, with typical element I hiiI < 1. 

3.1. Biases 

It is straightforward to derive expressions for the biases associated with the above forecasts, 
since in each case the forecasts are written as the conditional expectation (\iTT+,) plus another 
term, and the conditional expectation forecast biases are given by equations (16) or (29). For the 
first strategy, from equation (38): 

E[QT]= (2:- to )+ (tT- t l ) T  

and noting that the conditional and unconditional (over w,) expectations coincide here, then in 
the (z,, 2 ,)notation: 

* 
E[+T+hI WT]= E[QT+h-AhQTl= [hAh-DhI(tl' % I )  (45) 

As claimed above, the constant-adjustment strategy yields unbiased forecasts when 2:- 2,. 

In terms of the notation of Section 2.2: 

~ h $ T = ~ h ( y *Y) -A~~(P:-PO) - ~ h a g ' ( y * -  Y ) ~  -
and taking E[O,,,] from equation (29) we obtain: 

E[+T+hI w.I.] = ( h - A h - A h a ~ ) ( y * -  y)= -(Ah+Bh)ag'(y*- y )
* which is zero when the time trend is absent since fl' (y* - y )  = y ,-y = 0. 
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Expressions for the biases resulting from the other adjustment schemes are: 

Therefore 

and 

Finally 

When the time trend is absent, the biases with ICs become: 

Thus, when y * = y but p :+ p0,just adjusting the h-step forecast (that is, f f T + , ,  in equation 
(50)) will yield a larger bias than adjusting only the one-step forecast (see equation (49)). 
Even if the process remains unchanged there is no penalty in terms of bias from intercept 
correcting. 

3.2. Variances 

The penalty for intercept correcting when the process is unchanged is in terms of increased 
uncertainty. The conditional forecast error variances for strategies (40) to (44) are given by 
equations (52) to (55) below, and all exceed the conditional expectation forecast error variance 
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V[it,+, I w,] in equation (17) by a positive semi-definite matrix: 

.. - .. -

V [ V , + ~ ~ W ~ ] = ~ V [ P ~ + ~ ~ W ~ ] + ~CY'RY"jii 

For example, the error variance more than doubles for the constant-adjustment strategy. The problem 
is apparent from equation (38), since the intercept correction comprises terms reflecting the change in 
the intercept and trend parameter plus the full value of the period T disturbance, which has an 
(unconditional) variance of Q. A more precise estimate of the change-in-parameter component could 
be obtained by averaging a number of recent e m ,  provided the break occurred sufficiently far back. 

Nevertheless, summing the (squared) bias and variance components, for a sufficiently large 
change in zO, holding the adjustment constant over the forecast period will result in the smallest 
MSFE (since the bias components of the other adjustment schemes can be made arbitrarily large). 

4. FORECAST EVALUATION AND MULTI-STEP FORECASTS 

Clements and Hendry (1993) show that forecast comparisons based on MSFE may depend upon 
which isomorphic representation of the system is selected for the assessment. For example, one 
method or model may appear to predict the levels of the series more accurately, another the 
changes in the variables. Potential ranking reversals suggest caution in interpreting the results of 
MSFE comparisons. In our empirical work we check that our findings are not simply an artefact of 
one particular chosen transformation of the data by reporting results for both levels and dBerences. 

Alternatively, we could employ invariant criteria, such as the generalized forecast error second 
moment (GFESM) or its determinant. This is formed by stacking the (vectors of) forecast errors 
from all previous step-ahead forecasts. The one-step forecast errors determine the complete 
ranking for the GFESM when there is no parameter uncertainty and the model is correctly 
specified. However, the choice between misspecified models may depend on the forecast horizon, 
so that, independent of the measure of forecast accuracy, one model may dominate at certain 
horizons, and another at other horizons. Thus one-step forecast performance may not be a reliable 
guide to the outcome of comparisons for h-steps ahead (see, for example, Baillie, 1993; Fama and 
French, 1988). For this reason we report the results of comparisons for multi-step forecasts. 

Clements and Hendry (1995a) show that, in the absence of structural change or regime shifts, 
MSFE evaluations of the ability of models to predict differences of the variables may have low 
power in identifying models which incorrectly impose too many unit roots, i.e. VARs in 
differences when there is cointegration. We shall check whether all the models have a similar 
ability to predict the differences of the data in the presence of structural breaks. 

5. MODELLING WAGES AND PRICES IN THE UK 

Mizon (1995) analyses the relationships between the following three variables for the UK, over 
the period 1965: 1 to 1993: 1; el,the natural logarithm of earnings per man-hour (loosely referred 
to as 'wages'), the log of the retail price index, r,, and the log of the unemployment rate u,. 
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Precise definitions and sources are given in Mizon (1995) or Clements and Mizon (1991). The 
latter used a dataset that also included average hours worked and productivity per man-hour to 
illustrate the 'encompassing the VAR' approach of Hendry and Mizon (1993), while Mizon 
(1995) uses an extended sample on the three variables. 

Briefly, Mizon obtained a simultaneous model of the determination of wages, prices and 
employment, in which there is a single cointegrating vector that enters only the wage and price 
equations (see his Table 10). If the full-sample estimates of the cointegrating vector are retained, 
with the model otherwise being estimated up to 1979:2, and used to forecast (the 55 observations) 
1979:3-1993:1, the model's one-step-ahead forecast performance is satisfactory, as is that of a 
DVAR estimated, and used to forecast, over the same period. However, if the cointegrating vector 
is also determined from the sub-sample estimation period (as would necessarily be the case in an 
ex ante forecasting exercise), the model fails to provide reliable forecasts. 

This finding is not peculiar to the model specification found on the full-sample. A 'general-to- 
simple' model selection strategy applied to the sub-sample led to a model which differed somewhat 
from the full-sample specification (see Figure 1 for the parameter estimates), but nevertheless 
possessed the feature that the 'error correction' terms caused the 1-step forecasts to go awry.4 

Table I gives the first two moments of the one-step forecast errors and two forecast test 
statistics (see Doornik and Hendry, 1994, for details) for a (third-order) DVAR, the model 

Table I. One-step forecast performance of models 

Model Ae Ar Au 

Mean of forecast errors: 'bias': 1980:l-1993:l 
DVAR -0.0037 -0.0017 0.0010 
GMFS -0.0040 -0.0005 0.0007 
GMss -0.0080 0.0039 0.0004 
VECM -0.0076 0.0026 -0.0050 
VECM" 0.0041 -0.0023 -0.0049 
Average value 0.0212 0.0157 0.0186 
of actuals 

Standard deviations of forecast errors: 1980:l-1993:l 
DVAR 0.0120 0.0079 0.0281 
GMFS 0.0 105 0.0069 0.0219 
GMss 0.0147 0.0152 0.0219 
VECM 0.0136 0.0139 0.0232 
VECM* 0.0121 0.0077 0.0235 
Average value 0.0137 0.0127 0.058 1 
of actuals 

Model F1., .1 v I ~7 

Forecast tests 

DVAR 159,44 0.82[0.81] 0.69 [0.95] 

GMFS 159,49 0.69[0.96] 0.64 [0.98] 

GMSS 159,49 2~62[0.0001] 1.96 [0.004] 

VECM 159,51 2.21 [0.0007] 1.72 [0.01] 

VECM* 159,52 0.73[0.92] 0.70 [0.95] 


We use the sub-sample 1965:l-1979:4 rather than 1965:l-1979:2, which makes little difference to the results. 
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G M F ~ :  Mizon (19951, Table 10. Estimated by FIML. 1966:l--1993:l 


A e  = +0.3145 Ar 
(0.138) 

-0.03728 Au-2 
(0.01723) 

+0.03758 D745 
(0.004799) 

Ar = +0.3737 Ar-1 
(0.05695) 
+0.04739 D793 
(0.00720) 
+l. 585 
(0.205) 

A u  = +0.7554 Ae-1 
(0.1652) 
-0.142 hu-3 
(0.0554) 

+O. 3291 Ae-2 

(0.0742) 

-0.1269 ecm-1 

(0.05549) 


-1.095 

(0.4838) 


-0.03827 Au-2 

(0.0104) 


+0.00675 D745 

(0.00304) 


+0.7851 Au-1 

(0.0570) 

+0.129 Expansion 

(0.0094) 


+0.3022 Ar-3 

(0.0820) 

+0.0259 D793 

(0.01212) 


+0.1815 ecm-1 

(0.02358) 


+0.01119 Budget 

(0.00105) 


+0.1218 Au-2 

(0.0620) 


-0.01232 


a. = 0.0108 a, = 0.0071 a, = 0.0310 
where ecm = e - 0.88r - 0 . 0 1 7 ~  -0.008t. 

VECM model, estimated by FIML. 1966:l--1979:4 


(0.00535) 


-0.8204 

(0.4161) 


A e  = +0.3538 Ae-2 
( 0.0862 

+0.03685 D745 
(0.00504) 

A r  = +0.1906 he-1 
(0.0600) 
+0.1994 ecm794-1 

-0.1005 ecm794-1 

(0.0498) 


+0.03616 D793 

(0.01194) 


+0.2877 Ar-1 

(0.0752) 

+l. 675 

(0.357) 


+0.7541 Au-1 

(0.0719) 


-0.06187 Au-2 

(0.01602) 


+0.04376 D793 

(0.00860) 


+0.1264 Expansion 

(0.0122) 


0.0407 


(0.0427) 

+0.00872 Budget 

(0.00155) 


A u  = +0.4669 Ae-1 
(0.1492 ) 

a, = 0.0118 a, 
where ecm794 = e - 0.76r + 

= 0.0086 a, = 
0 . 0 7 6 ~  -0.013t. 

D793, D745, Budget, and Expansion are dummy variables, see Mizon (1995). 


Figure 1. Full-sample model and the sub-sample VECM model 

given in Mizon (1995) with the cointegrating vector estimated over the full sample, (GM,), the 
same specification with the cointegrating vector estimated on data up to 1979:2 (GMss), and a 
model specified and estimated on the sub-sample alone, VECM. Finally, VECM* is VECM but 
with the equilibrium-correction terms omitted. 

From the first part of the table, it is apparent that the one-step forecasts from the GMss and 
VECM models for the quarter-on-quarter growth in earnings are, on average, 0.8% points too 
high. This is approximately twice the size of the bias from the other three models (which either 
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Equilibriumenor: full-sample 


-8.65 d,
-8.7 1965 1970 1975t,1985 1990 ,1980 

Figure 2. 'Equilibrium errors': full- and sub-sample estimates 

neglect the long-run information or base it on the full sample). By way of comparison, the 
average growth in earnings over the forecast period (1980: 1 -1993: 1) was 2% a quarter. GMss 
and VECM also record larger biases in forecasting Ar. The standard deviations of the forecast 
errors are appreciably higher for both h e  and Ar for the GMss and VECM models. The forecast 
tests in the third part of the table depict the resounding rejection of the GM, and VECM models 
alluded to above. A comparison of the results for VECM with those for VECM* highlights the 
problems caused by the equilibrium-correction terms. 

The tests have F-distributions with degrees of freedom as specified in the table, the quantities 
in ' [ I '  following the test statistic values are p-values. The first test headed q, is an index of 
numerical parameter constancy, and ignores parameter uncertainty and serial correlation 
between the forecast errors, the second (headed q,) allows for parameter uncertainty (see 
Doomik and Hendry, 1994, p. 197, for full details). 

Figure 2 depicts time-series plots of the 'equilibrium errors' for the full sample where the 
coefficients of the cointegrating vector have been estimated both from the full sample and from 
the sub-sample. The sub-sample error has a sharp downward trend in the 1980s, no longer 
appears to be an l(0) process, and by the 1990s is over 10% lower than at the beginning of the 
period. 

6. AN EMPIRICAL STUDY OF THE IMPACT OF INTERCEPT CORRECTIONS 

Of the models incorporating long-run information discussed in Section 5, we will explore the 
behaviour of VECM when use is made of intercept corrections. GM, and GMss either result 
from, or are motivated by, knowledge of the full sample, which is ruled out for ex ante 
forecasting. 

Three of the forms of intercept correction discussed in Section 3 are implemented: a constant 
adjustment throughout the period, a one-off adjustment in the first period of the forecast, and an 
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adjustment which is tailed off as we forecast further ahead (the matrix H in equation (44) is a 
diagonal matrix with 4s on the leading diagonal). In fact the constant adjustment to 
unemployment led to a ballooning of MSFEs (the unemployment equation is solely in 
differences), so by 'constant adjustment to all equations' is to be understood constant adjustment 
to earnings and prices but tailed-off adjustment to unemployment. 

Forecasts can be adjusted using the value of an equation's error at the forecast origin, or an 
average of that and the previous ( p- 1) errors. More elaborate schemes might utilize 
information from other equations, for example, or conduct significance tests, but we shall 
consider adjustments based on the latest own-error [I]  and the latest four errors [4]. We also 
consider the impact of only adjusting the equations with 'error-correction' mechanisms, that is, 
e and r. 

The precise way in which the forecasts are obtained is as follows. The models are estimated 
only once on data up to 1979:4. Then, 1979:4 is taken as the first forecast origin (initial 
condition) from which we calculate forecasts for 1 through to 12 steps ahead. The exercise is 
repeated with 1980:l as the forecast origin, and so on, subject to the constraint that we have data 
on the period being forecast (the sample ends in 1993:l). This gives 53 one-step forecasts, 
where the last forecast is made in 1992:4 of 1993:1, 52 two-step forecasts (a forecast made in 
1979:4 of 1980:2 through to a forecast made in 1992:3 of 1993:1), and so on to 42 12 steps. The 
means and forecast errors for each length of forecast are calculated by averaging over the 
available number of forecasts, corresponding to averaging over the forecast origins. 

The results are summarized in Figures 3-6. In each figure, the x-axis denotes the forecast 
lead, and the y-axis the trace mean-square forecast error (TMSFE). The first two figures are 
TMSFEs for predicting the levels of the data, the second two for the differences. Consider 
Figure 3. The figure conveys information for the VECM, for one-off adjustments to the VECM 
based on the latest residual (one-off [1]) and an average of the latest 4 (one-off [4]); and for 
constant adjustments to the VECM (const [I], and const [4]). In each case, the line is scaled by 

VECM
/ Lorn*] 

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 

Figure 3. TMSFEs: levels of the variables. Adjustments to e and r equations only 
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VECM 

t 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 


Figure 4. TMSFEs: levels of the variables. Adjustments to all equations 
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Figure 5. TMSFEs: differences of the variables. Adjustments to e and r equations 
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.... ............. ...I." 
...... 

I I I , I L , J 

I 2 3 4 5 6 7 8 9 10 1 1  12 13 

Figure 6. TMSFEs: differences fo the variables. Adjustments to all equations 

the TMSFE for the DVAR, to aid interpretation. Figure 3 is based on corrections to e and r 
only, and Figure 4 on corrections to all equations (but recall the 'constant' adjustment to u is a 
'tailed' adjustment). The fully tailed-off adjustment cases are not depicted. 

The figure shows that the TMSFE of the VECM model almost always exceeds that of the 
DVAR, and is over 40% higher for 12-steps ahead.5 Constant adjustments appear to work best 
on average (across horizons) for longer horizons, and one-off adjustments result in a better 
performance at long horizons when applied to all equations (as in Figure 4) rather than only the 
e and r equations (Figure 3). Averaging residuals ([4] versus [I])  works best for constant 
adjustments, and for horizons up to 10 quarters ahead, the VECM model now outperforms the 
DVAR on the TMSFE measure (Figure 4). For predicting the changes in the data, the one-off 
adjustments are less useful than the constant adjustments, underlining the danger of relying on a 
single transformation of the data (just levels, say) when forecast models/methods are compared 
in terms of MSFE (Clements and Hendry, 1993). The finding in Clements and Hendry (1995a) 
that evaluation in terms of differences might be expected to have low power to discriminate 
between models does not apply in the presence of structural breaks. The adjustments are not 
quite as successful in improving the forecast performance of the VECM model for differences. 

It is apparent that automatic adjustments bolster the forecast performance of the model 
incorporating long-run information. Indeed, at short horizons, the VECM model outperforms the 
DVAR by about 20% (due to its better fit combined with the intercept correction offsetting the 
bias), and only when the variance of the intercept correction becomes large does the DVAR win. 
This suggests the possible use of selection criteria or longer averages when correcting. 

We now look at whether the improvements due to the intercept corrections result from 
reductions in the bias or variance components of the MSFEs. Table I1 records the bias and 
forecast error standard deviations for the VECM model, the DVAR, and the constant 
adjustments (to e and r only), and the one-off adjustments (to all equations), for a selection of 
forecast lead times, for the levels of the variables. 
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Table LI. Effect of intercept corrections on means and standard deviations of 

forecast errors 

Mean S. dev 

Model e r u 

One-step forecast errors 
DVAR -0.004 -0.002 0.001 

VECM -0.009 0.004 -0-005 

const [ I ]  -0.001 - -0.005 

1-off [ I]  -0.001 - -

const [4] -0.002 0.001 -0.005 

1-off [4] -0.002 0.001 0.001 


Four-step forecast errors 
DVAR -0.019 -0.013 -0.020 0.026 0.018 0.152 
VECM -0.036 - -0.065 0.038 0.034 0.141 
const[l] -0-009 0.001 -0.048 0.044 0.043 0.133 
1-off [ I]  -0.030 0.003 -0.043 0.033 0.033 0.129 
const[4] -0.013 0.003 -0.051 0.029 0.027 0.136 
1-0ff[4] -0.031 0.003 -0.041 0.032 0.032 0.141 

Eight-step forecast errors 
DV AR -0.046 -0.034 -0.099 0.025 0.027 0.314 
VECM -0.068 -0.024 -0.212 0.044 0.046 0.285 
const [1] -0.025 0.002 -0.166 0.084 0.093 0.268 
1-off [ I]  -0.065 -0.018 -0.182 0.042 0.047 0.268 
const [4] -0.030 0.002 -0-172 0.049 0.064 0.268 
1-off [4] -0.065 -0.019 -0.176 0.041 0.047 0.280 

Twelve-step forecast errors 
DVAR -0.070 -0.054 -0.236 0.028 0.033 0-409 
VECM -0.089 -0.055 -0.414 0.037 0.050 0.381 
const [ I ]  -0.032 0.005 -0.341 0.122 0.152 0.346 
1-off [I] -0.087 -0.049 -0.375 0.038 0.053 0.370 
const [4] -0.041 0.001 -0.354 0.080 0.106 0.341 
1-off [4] -0.088 -0.050 -0.375 0.036 0.053 0.381 

A'-' denotes a number less than in absolute value. 

The constant adjustments (const [I]) reduce the biases in forecasting e and r at all horizons, 
but at the cost of larger forecast error variances. Averaging four residuals to form the constant- 
adjustment intercept correction (const [4]) is generally less successful in reducing biases, but 
has a smaller inflationary effect on the variances, consistent with the analysis in section 3. The 
impact of the one-off adjustments on biases is largely short term, and there is a minimal impact 
on the variance component. 

7. CONCLUSIONS 

In the empirical illustration, based on modelling and forecasting wages, prices and 
unemployment, we find that vector autoregressions in the differences of the variables (which 
eschew long-run information) forecast well compared to a vector equilibrium-correction system 
(VECM) when the long-run relationships are subject to structural change. However, the VECM 
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clearly provides a better description of the data within-sample, and the equilibrium-correction 
terms are significant at conventional significance levels. 

In line with the analysis in Section 3, in the empirical illustration we found that intercept 
corrections can improve the forecasts of econometric models when the long-run relationships appear 
to alter over the forecast period. In particular, the corrections resulted in significant reductions in 
forecast bias. The precise form of the adjustments affects the forecast bias and variance, which also 
depend on the forecast horizon, emphasising the need to consider multi-step forecasts. 

APPENDIX: A DYNAMIC DVAR 

Here we derive the population of a DVAR for Aw, regressed on Awl-, and an intercept. First, 
from equation (10): 

is a white-noise innovation process, accounting for n - r of the equations in the DVAR. Next: 

B'w, - (PO + ~(ll(t+ I ) )=  (I,+ B'a)[B'w,-l - (PO+ ~ i t ) l-B'vr 

Also: 

AB'w, = PI + B ' ~ ( B ' W , - ~  - + B'vr-PO ~ l t )  
Let: 

be the remaining r variables in the DVAR. Then: 

where 

has all its eigenvalues inside the unit circle. So: 

E[Ax,.Ax;-,]= 2E[x ,~d-~ l - E[x,-lx',-llE[x$-21-
= ~AE[x , -~x ' , -~]A2E[x,-,x:-,l -E[xt-lx:-lI-

= (I, - 2A + A2)M= (I, -A),M = (B' a),M 

and: 

EIAx,-lAx',-l]= 2E[x,-lx:-ll- E[x,-lx~-,l- E[xt-2~',-11 
= (I,- A)M + M(1,- A') = -B1aM -Ma'B 

Finally: 

E[x?:] = M = AMA' + B'QB 

Noting that Ax, = B' Aw ,-p1and letting: 

Ap'w, = (I, -B)p, +BAB'W,-~+ e, 

where 

then: 
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Thus, we stack the n - r equations from equation (Al) with the r from (A2) to yield: 
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